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Ch2. Quadratic forms
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Direct sum

Theorem
The vector space V is the direct sum of its subsapces U and W if and
only if (i) V = U +W and (ii) U ∩W = {0}.

Example

1 R3 = U ⊕W ; U = {(a, b, 0); a, b ∈ R} and W = {(0, 0, c); c ∈ R}.
2 Let E be a vector space of finite dimension, and let F and G be two

sub-spaces of E such that: F ∩ G = {0} and
dim(F ) + dim(G ) = dim(E ). We have E = F ⊕ G .

3 R3 = L⊕ P; P = {(x , y , z) ∈ R3; x − y + 2z = 0} and
L = {t(1,−1, 2); t ∈ R}

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 3 / 24



Direct sum

Theorem
The vector space V is the direct sum of its subsapces U and W if and
only if (i) V = U +W and (ii) U ∩W = {0}.

Example

1 R3 = U ⊕W ; U = {(a, b, 0); a, b ∈ R} and W = {(0, 0, c); c ∈ R}.

2 Let E be a vector space of finite dimension, and let F and G be two
sub-spaces of E such that: F ∩ G = {0} and
dim(F ) + dim(G ) = dim(E ). We have E = F ⊕ G .

3 R3 = L⊕ P; P = {(x , y , z) ∈ R3; x − y + 2z = 0} and
L = {t(1,−1, 2); t ∈ R}

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 3 / 24



Direct sum

Theorem
The vector space V is the direct sum of its subsapces U and W if and
only if (i) V = U +W and (ii) U ∩W = {0}.

Example

1 R3 = U ⊕W ; U = {(a, b, 0); a, b ∈ R} and W = {(0, 0, c); c ∈ R}.
2 Let E be a vector space of finite dimension, and let F and G be two

sub-spaces of E such that: F ∩ G = {0} and
dim(F ) + dim(G ) = dim(E ). We have E = F ⊕ G .

3 R3 = L⊕ P; P = {(x , y , z) ∈ R3; x − y + 2z = 0} and
L = {t(1,−1, 2); t ∈ R}

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 3 / 24



Direct sum

Theorem
The vector space V is the direct sum of its subsapces U and W if and
only if (i) V = U +W and (ii) U ∩W = {0}.

Example

1 R3 = U ⊕W ; U = {(a, b, 0); a, b ∈ R} and W = {(0, 0, c); c ∈ R}.
2 Let E be a vector space of finite dimension, and let F and G be two

sub-spaces of E such that: F ∩ G = {0} and
dim(F ) + dim(G ) = dim(E ). We have E = F ⊕ G .

3 R3 = L⊕ P; P = {(x , y , z) ∈ R3; x − y + 2z = 0} and
L = {t(1,−1, 2); t ∈ R}

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 3 / 24



Proof of example 3

L is the normal line of P. Note that a plane and its normal line clearly only
intersect in one point, and in this case both pass through the origin, so
clearly L ∩ P = {0}. Checking that R3 = L+ P is the same as checking
that for any (x , y , z) ∈ R3, there is a point on the line, say (a,−a, 2a),
and a a point on the plane, say of the form (b, b + 2c , c), for which

(x , y , z) = (a,−a, 2a) + (b, b + 2c , c) = (a+ b,−a+ b + 2c , 2a+ c).

This is the same as solving AX = d , where d =

 x
y
z)

 and

A =

 1 1 0
−1 1 2
2 0 1

. Since we want to show that this is always solvable,

for any choice (x , y , z), this is equivalent to A being invertible, or
detA = 6 6= 0.
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diagonalisation

Definition
A square n × n matrix A over a field F is called diagonalizable or
nondefective if there exists an invertible matrix P such that P−1AP is a
diagonal matrix. Formally,

In order to get the matrix P, we need to compute the characteristic
polynomial wich is: PA(λ) = det(A− λI ), where λ is an eigen value for
A, or simply a root of P(A).
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Example

The roots of the characteristic polynomial p(λ) = det(λI − A) are the
eigenvalues λ1 = 1, λ2 = 1, λ3 = 2. Solving the linear system
(I − A) v = 0 gives the eigenvectors v1 = (1, 1, 0) and v2 = (0, 2, 1),
while (2I − A) v = 0 gives v3 = (1, 0,−1); that is, Avi = λivi for
i = 1, 2, 3. These vectors form a basis of V = R3, so we can assemble
them as the column vectors of a change of basis matrix P to get:
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Application on direct sum

Theorem
Let W1,W2, . . .Wk be subspaces of a finite dimensional vector space V .
The following conditions are equivalent:

1 V = W1 ⊕W2 ⊕ . . .⊕W
k .

2 V =
∑k

i=1 Wi , and for any vectors V1,V2, . . .Vk , such that
Vi ∈Wi (1 ≤ i ≤ k), if v1 + v2 + . . . vk = 0 then vi = 0 for all i .

3 Each vector v∈ V can be uniquely written as v = v1 + v2 + . . .+ vk
where vi ∈Wi .

4 If vi is an ordered basis for Wi , (1 ≤ i ≤ k), then v1 ∪ v2 ∪ . . .∪ vk is
an ordered basis for V .

5 For each i = 1 . . . , k , there exists an ordered basis Vi for Wi such
that v1 ∪ v2 ∪ . . . ∪ vk is an ordered basis for V

Homework graded.
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One more example

Theorem
A linear operator T on a finite -dimensional vector space V is
diagonalisable if and only if V is the direct sum of the eigen spaces of T .

Proof.
Let λ1, λ2, . . . , λk be the distinct eigen values of T . First suppose that T
is diagonalisable and for each i choose an ordered basis Vi for the
eigenspace Eλi . By definition, v1 ∪ . . . ∪ vk is a basis for V , and hence
from the previous theorem V is a direct sum of E ′λi

s.
Conversely, suppose that V is a direct sum of the eigen spaces of T . For
each i , choose an ordered basis Vi for Eλi . V = Eλ1 ⊕ . . .⊕ Eλk

. By the
previous theorem, the union is a basis for V . Since each eigenspace Eλi

consists of zero vector and the eigenvectors of T corresponding to the
eigenvalue λi . Thus Vi consist of only eigenvector because 0 /∈ vi , since
vi is a basis for eigenspace Eλi .
Hence the basis v1 ∪ v2 ∪ . . . ∪ vk consists of eigen vectors of T, we
conclude that T is diagonalisable.
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Linear form

Definition
A linear form is a linear map from a vector space E to its field of scalars
(often the real set R or complex set C).

A linear form is a function ` : E −→ R, which satisfies the following:
∀x , y ∈ E and λ ∈ R,

l(x + λy) = l(x) + λl(y).

Definition
The set of all linear forms over a vector space E, `(E , k), is the dual
vector space and is denoted by E∗.
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Examples

Let E be any vector space. The null function, which associates every
vector of E to the real 0 is a linear form.
Let a1, a2 ∈ R. The function l(x1, x2) = a1x1 + a2x2 is a linear form
defined on R2.
Note C 0([0, 1],R]), the vector space of continuous functions defined
on the interval [0, 1] to reel values. The application

f →
∫ 1

0
f (t)dt

is a linear form overC 0([0, 1],R]).
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Proposition

The linear forms defined over Rn are the functions of the form:

l(x1, x2, . . . , xn) = a1x1 + a2x2 + . . .+ anxn.

The real numbers a1, . . . an are the coefficients of the linear form l .
Let us check that any linear form is indeed of this form. For that, let
a1 = l(1, 0, . . . , 0), . . . , an = l(0, 0, . . . , 1). By linearity,
l(x1, . . . xn) = x1l(1, 0, . . . , 0) + ...+ xnl(0, 0, . . . , 1) = a1x1 + . . .+ anxn.
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kernel of a linear form

The kernel of a linear form defined over E is a vector subspace of E. We
will characterize these subspaces by their dimension.

Definition
Let E be a vector space of finite dimension n. A vector subspace of
dimension n − 1 is called the hyperplane of E.

Example

1 If E is of dimension 2, the hyperplanes of E are lines.
2 If E is of dimension 3, the hyperplanes of E are planes.

From a geometric point of view, vectors direct vector lines.
Linear shapes direct hyperplanes.
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More about hyperplanes

Proposition

Let E be a vector space of finite dimension n.
The kernel of a non-zero linear form is a hyperplane.
Any hyperplane is the kernel of a non-zero linear form.
Two non-zero linear forms define the same hyperplane if and only -
ment if they are proportional.
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proof

The first point follows from the rank formula. Let l be a linear form.

dimker(l) + rank(l) = n.

If l is zero, its image is equal to {0} and rank(l) = 0. If l is
non-zero, its image is equal to R and rank(l) = 1.

Let H be a hyperplane of E and e1, . . . , en−1 a basis of H. Let en be
a vector of E which is not in H. It is not a combination of
e1, . . . , en−1, the family (e1, . . . , en−1, en) is therefore free, it is a
basis of E. A vector x = x1e1 + . . .+ xnen of E is in H if and only if
it is expressed in function of e1, . . . , en−1, that is to say if and only if
xn = 0. It is therefore the kernel of the linear form defined by
l(x1e1 + . . .+ xnen) = xn.
Let l1, l2 ∈ E∗ be non-zero such that H = ker(l1) = ker(l2). In the
base of E just considered, l1(ei ) = l2(ei ) = 0 if i < n. We can deduce

l1(
∑

xiei ) = xnl1(en), l2(
∑

xiei ) = xnl2(en),

hence l1 = l1(en)
l2(en)

l2. These two forms are quite proportional.
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Proposition

The coordinates of a linear form l ∈ E∗ in the base (e∗1 , . . . , e
∗
n ) are worth

l(e1), l(e2), . . . , l(en).

The space E∗ is of finite dimension and dimE∗ = dimE H.W.

We agree to represent the coordinates of a vector in a base given (ei ) of
E in the form of a column vector and to represent the coordinates of a
linear form in the dual basis (e∗i ) of E

∗ in the form of line vector. With

this convention, if x ∈ E and l ∈ E∗ have coordinates:

x1
. . .
xn

 and

(a1, . . . , an). then the quantity l(x) is obtained by taking the product of
the two vectors:

l(x) = (a1, . . . , an)

x1
. . .
xn

 = a1x1 + . . . anxn.
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Solution

Let us show first that B∗ is a free family of E∗. Suppose that the null
linear form can be written as: 0 = λ1e

∗
1 + . . .+ λne

∗
n ; we prove that the

coefficiants are necessarily null by applying the linear form defined by the
second member on ei : we get 0 = (λ1e

∗
1 + . . .+ λne

∗
n )(ei ) = λi for all

1 ≤ i ≤ n.
Now let us show that B∗ is a generator family of E∗. Let f be a linear
form of E∗. We let λi = f (ei ) for all 1 ≤ i ≤ n and
g = λ1e

∗
1 + . . .+ λne

∗
n . The linear foms f and g are equal over the

vectors of the base B because g(ei ) = λi = f (ei ) for all 1 ≤ i ≤ n.
Consequently, f = g , which concludes our proof.
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Case of Rn, Canonical basis

Recall what is the canonical basis of Rn. With the convention that
consists in representing the vectors of Rn in the form of columns, it is a
question of vector family:

Any vector of Rn is expressed in this basis as follows.
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We agreed to represent the elements of the dual Rn∗ in the form of
vectors lines. The elements of the dual basis of the canonical basis are
then (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1).

Any vector of Rn∗ is then expressed in this basis as follows.

The dual basis of the canonical basis of Rn is called the canonical basis
of Rn∗.
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Independency

Linear shapes are the elements of a vector space. So we can be interested
in the independence of a family of linear shapes.

Remember that a family of vectors is linearly independent if there is no
non-trivial linear relation between these vectors.
Method: independence of a family of linear shapes.
To determine if a family of linear shapes (l1, . . . , lk) is linearly
independent, we decompose this family in a base and we form the matrix
whose rows are given by the row vectors associated with each linear
shapes. The family is linearly independent if and only if the rank of this
matrix is equal to k

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 20 / 24



Independency

Linear shapes are the elements of a vector space. So we can be interested
in the independence of a family of linear shapes.
Remember that a family of vectors is linearly independent if there is no
non-trivial linear relation between these vectors.

Method: independence of a family of linear shapes.
To determine if a family of linear shapes (l1, . . . , lk) is linearly
independent, we decompose this family in a base and we form the matrix
whose rows are given by the row vectors associated with each linear
shapes. The family is linearly independent if and only if the rank of this
matrix is equal to k

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 20 / 24



Independency

Linear shapes are the elements of a vector space. So we can be interested
in the independence of a family of linear shapes.
Remember that a family of vectors is linearly independent if there is no
non-trivial linear relation between these vectors.
Method: independence of a family of linear shapes.

To determine if a family of linear shapes (l1, . . . , lk) is linearly
independent, we decompose this family in a base and we form the matrix
whose rows are given by the row vectors associated with each linear
shapes. The family is linearly independent if and only if the rank of this
matrix is equal to k

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 20 / 24



Independency

Linear shapes are the elements of a vector space. So we can be interested
in the independence of a family of linear shapes.
Remember that a family of vectors is linearly independent if there is no
non-trivial linear relation between these vectors.
Method: independence of a family of linear shapes.
To determine if a family of linear shapes (l1, . . . , lk) is linearly
independent, we decompose this family in a base and we form the matrix
whose rows are given by the row vectors associated with each linear
shapes. The family is linearly independent if and only if the rank of this
matrix is equal to k

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 3, 2021 20 / 24



Example

We consider the three linear forms defined on R3 by:

The coordinates of these linear forms in the canonical basis are
(1, 1, 0), (0, 1, 1), (1, 0,−1).

The matrix obtained by stacking these rows is equal to

1 1 0
0 1 1
1 0 −1

.

We determine its rank by putting it in echelon form:
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It is of rank 2.
The family is therefore not linearly independent.
We could have gone faster by noticing directly that there is a relationship
nontrivial linear between the linear forms l1, l2 and l3: l1 = l2 + l3.
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Link with linear systems

Consider a homogeneous linear system on Rn of the form

Let us define linear forms li by setting

li (x) = ai,1x1 + ...+ ai,nxn.

We see that a vector is a solution of the system if and only if it
annihilates all these linear forms, that is, if it belongs to ker(li ) for all i .
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Geometrically, the vector space of the solutions of the system is an
intersection of hyperplanes.

Consider the case n = 3 and assume the hyperplanes are all distinct.
The system is of rank three.
Only the zero vector is solution of the system and the only three
hyperplanes meet at the origin.
If it’s rank two, the three hyperplanes meet on a straight line.
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Bilnear form

Definition
Let E be a real vector space. A bilinear form is a function defined on
E × E with real values which is linear in each of its variables.

It is a function φ : E × E → R which satisfies, for all x , y , z ∈ E and
λ ∈ R,

φ(λx + y , z) = λφ(x , z) + φ(y , z)

φ(x , λy + z) = λφ(x , y) + φ(x , z)

Definition
A bilinear form is symmetric if for all x , y ∈ E

φ(x , y) = φ(y , x)
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Examples

Over R, the bilinear forms are of the form φ(x , y) = axy for a ∈ R.

The usual dot product over Rn is a symmetric bilinear form. For
x = (x1, ..., xn) and y = (y1, ..., yn) ∈ Rn, it is given by:

φ(x , y) =
n∑

k=1

xkyk = x1y1 + . . .+ xnyn.

Let a, b, c , d ∈ R and x = (x1, x2), y = (y1, y2) ∈ R2. The next
function is a bilinear form over R2:

φ(x , y) = ax1y1 + bx1y2 + cx2y1 + dx2y2

it is symmetric if and only if b = c .
Over the vector space C 0([0, 1],R), the following function is a
symmetric bilinear form.

φ(f , g) =

∫ 1

0
f (t)g(t)dt.
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Remark

Note that
To verify that a map φ : E × E → R is a symmetric bilinear form, it
suffices to see tha φ is linear in the 1st variable and verifies
φ(x , y) = φ(y , x) (these two conditions assure the linearity in the
2nd variable).
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Exercise

Let us consider the vector space E = R2 and e1, e2 its cannonical base.
Here are some maps, say which are bilinear and which are symmetric
bilinear forms.

All of them are bilinear except the last one.
Only the first three are symmetric bilinear forms.
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Matrix representation

We now place ourselves within the framework of the finite dimension. We
will associate a matrix with any bilinear form.

Definition
Let E be a finite dimensional vector space with a basis (e1, ..., en) and φ a
bilinear form over E. The matrix of φ in the base (e1, ..., en) is the
follwoing square matrix:

The form φ is symmetrical if and only if its matrix is symmetrical.
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Examples

The matrix associated with the bilinear form on R2 given by:

φ(x , y) = ax1y1 + bx1y2 + cx2y1 + dx2y2

is the matrix
(
a b
c d

)

The matrix associated with the usual scalar product on Rn is the
identity matrix.
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Conversely, to a square matrix B of size n× n, we can associate a bilinear
form on Rn by setting:

We denote (x1, ...xn) the coefficients of the vector x ∈ Rn, (y1, .., yn)
those of y and bi,j those of the matrix B.
We immediately check that bi,j = φ(ei , ej), where the (ei ) are the vectors
of the canonical basis of Rn. Matrix B is well the matrix associated
with this bilinear form.
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Changement of basis

The matrix associated with a symmetric bilinear form depends on the
basis chosen to represent it. Let’s explain how this matrix is transformed
when performing a base change.

Recall that the transition(Passage) matrix is defined between two bases
(ei )i=1..n and (e′i )i=1..n of a finite dimensional space. This is the matrix
whose columns are composed of the coordinates of the vectors of the new
base (e′i ) in the old base (ei ). Let us denote this matrix P = pi,j .

e j =
n∑

i=1

Pi,jei
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Let x = (x1, ..., xn) be the coordinates of a vector in the old basis and
x ′ = (x ′1, ..., x

′
n) the coordinates in the new base. We then have:

The matrices A and A’ of a linear map f : E → E in the bases (ei ) and
(e′i ) satisfy the relation:

A′ = P−1AP

We say that the matrices A and A’ are conjugate. The relationship that
binds matrices associated with a bilinear form is different.
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Proposition

Let E be a finite dimensional space with two bases (ei )i=1..n, (e
′
i )i=1..n

and of a bilinear form φ : E × E → R. Let us denote by P the passage
matrix between these two bases and B, B’ the matrices of φ in each of
the bases. Then

B ′ = PTBP.

Proof.
φ(x , y) = xTBy = (Px ′)TB(Py ′) = x ′T (PTBP)y ′

Two square matrices B and B’ linked by a relation of the form
B ′ = PTBP, where P is an invertible matrix, are said to be congruent.
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Rank and kernel

Definition
The kernel of a bilinear form is defined by

ker(φ) = {y ∈ E |∀x ∈ E , φ(x , y) = 0}.

A bilinear form is said to be non-degenerate if its kernel is restricted to
the null vector: ker(φ) = {0}.
These are the vectors y ∈ E for which φ(x , y) is zero for all x ∈ E .
It is a vector subspace of E.
In a given base, it coincides with the kernel of the matrix associated with
the bilinear form.
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Examples

1 The bilinear form on R2 defined by φ(x , y) = x1y1 has a matrix of(
1 0
0 0

)
. Its kernel is made up of vectors whose first coordinate

vanishes:

ker(φ) = vect(

(
0
1

)
)

2 An example of a non-degenerate bilinear form is given by the usual
scalar product over Rn. In fact, the associated matrix is identity, its
kernel is indeed restricted to {0}.

3 The bilinear form defined on C 0([0, 1],R) by
φ(f , g) =

∫ 1
0 f (t)g(t)dt is also not degenerate. In fact, if

φ(f , g) = 0 for all g, we can take g = f and get
∫
f (t)2dt = 0. We

conclude using the following result of integration: A positive
continuous function whose integral is zero is identically null.
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Definition
The rank of a bilinear form defined on a vector space of finite dimension
is equal to the rank of its matrix. It does not depend on the base
chosen to express this matrix.

The rank formula for matrices results in

dimker(φ) + row(φ) = dimE .

Let us finish by noting that the set of symmetrical bilinear forms is a
vector space. We combine two bilinear forms φ1, φ2 defined on the same
space by the formula

(λφ1 + φ2)(x , y) = λφ1(x , y) + φ2(x , y).

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD September 26, 2021 15 / 15



Definition
The rank of a bilinear form defined on a vector space of finite dimension
is equal to the rank of its matrix. It does not depend on the base
chosen to express this matrix.

The rank formula for matrices results in

dimker(φ) + row(φ) = dimE .

Let us finish by noting that the set of symmetrical bilinear forms is a
vector space. We combine two bilinear forms φ1, φ2 defined on the same
space by the formula

(λφ1 + φ2)(x , y) = λφ1(x , y) + φ2(x , y).

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD September 26, 2021 15 / 15



Definition of Quadratic forms

We now focus on the study of symmetrical bilinear forms. We will
associate with such a form a polynomial of degree two to several
variables that we can then simplify as we did with quadratic polynomes
with one variable.

Definition
A quadratic form Q defined on a real vector space E is a function from E
to R of the form φ(x , x), where φ : E × E → R is a symmetrical bilinear
form.

∀x ∈ E ,Q(x) = φ(x , x).
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The bilinear form φ is called the polar form of Q. Let E be a space of
finite dimension with a basis (ei )i=1..n. Let us give the general expression
of a quadratic form in coordinates. Let B be the matrix of the bilinear
form associated with Q. Then

Q = (
n∑

k=1

xkek) = xTBx =
∑
i,j

bi,jxixj =
∑
i

bi,ix
2 + 2

∑
i,j,i<j

bi,jxixj

This expression is a polynomial with several variables, of which all the
terms are of total degree two.
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Examples

Consider the quadratic form over R2 for which B =

(
a b
b c

)
, then:

Q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2

The quadratic form associated with the usual scalar product of Rn is:

Q(x1, . . . , xn) =
n∑

k=1

x2
k = x2

1 + . . .+ x2
n

This is the square of the length of the vector (x1, ..., xn).
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Given a quadratic form Q, there is only one form symmetric bilinear for
which we have Q(x) = φ(x , x) for all x. We obtained through the
following formulas.

The last three formulas are called polarization identities.
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Proof
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calculation of the matrix associated with a quadratic form

To calculate the matrix associated with a quadratic form,

1 one places on the diagonal the coefficients of the squares x2
i

appearing in the polynomial of degree two defining Q.

2 For terms which are not on the diagonal, we must divide by two the
coefficients of the terms xixj of the polynomial.
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Example

Let Q(x1, x2, x3) = x2
1 + 2x2

2 + 6x1x2 + 10x1x3. The associated matrix is:1 3 5
3 2 0
5 0 0


We also define the rank and the kernel of a quadratic form. They are
equal to the rank and the kernel of the symmetrical bilinear form or of
the associated matrix.
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The cone

Let Q be a quadratic form on a vector space E. The cone of the
isotropic vectors of Q is defined by

C (Q) = {x ∈ E |Q(x) = 0}

A vector x ∈ E satisfying Q(x) = 0 is said to be isotropic.
It always contains the kernel of the quadratic form: ker(Q) ⊂ C (Q).
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Example

Let Q(x1, x2) = x2
1 − x2

2 . The associated matrix is:
(
1 0
0 −1

)
.

The quadratic form is therefore of rank two and ker(Q) = {0}.
Let us calculate its cone:
Q(x1, x2) = 0 implies (x1 + x2)(x1 − x2) = x2

1 − x2
2 = 0.

This means x1 = x2 or x1 = −x2. The cone is the union of these two

vectorial lines directed by the vectors:
(
1
1

)
and

(
1
−1

)
.
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The signature

We will introduce an important invariant of the quadratic forms,
connected to the sign that its values can take.
A quadratic form is said

positive if for all x ∈ E , Q(x) ≥ 0,
positive definite if for all non-zero x ∈ E , Q(x) > 0,
negative if for all x ∈ E ,Q(x) ≤ 0,
negative definite if for all non-zero x ∈ E ,Q(x) < 0.
indefinite if ∃x ∈ E ,Q(x) > 0 and ∃y ∈ E ,Q(y) < 0.
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Examples

1 The quadratic form Q(x) = Q((x1, x2)) = x2
1 + x2

2 is positive
definite, because for all x ∈ R2, x 6= 0; we have Q(x) > 0

2 The quadratic form Q(x) = Q((x1, x2)) = x2
1 + x2

2 + 2x1x2 is
positive, because for all x ∈ R2, x 6= 0; we have
Q(x) = (x1 + x2)

2 ≥ 0
3 The quadratic form Q(x) = Q((x1, x2)) = x1x2 is indefinite, because

for x ∈ R∗+ × R∗+ we have Q(x) > 0 and for x ∈ R∗− × R∗− we have
Q(x) < 0
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We recall that a bilinear form is a non-degenrated form if its kernel is
equal to {0}.

Note that
A positive definite quadratic form is a non-degenerated form.

In fact, ker(Q) ⊂ C (Q) and the cone is zero in the case non-degenerated
by definition: C (Q) = x |Q(x) = 0 = {0}
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Proposition

A quadratic form Q(x) =
∑n

i=1
∑n

j=1 ai,jxixj can be written as:

n∑
j=1

λjy
2
j

where λ1, . . . , λn are the eigen values of A and yj are linear combinations
of x1, . . . , xn.
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Proof

Q(x) =
∑n

i=1
∑n

j=1 ai,jxixj = XTAX , since A is symmetric then A is
diagonalisable and there exists a matrix P such that:

A = PDP−1,

where D is a diagonal matrix having the eigean values of A on its
diagonal and P is an invertible matrix having i its columns the eigen
vectors and such that: P−1 = PT , hence:

Q(x) = XTAX = XTPDPTX

we let Y = PTX then Y T = XTP and we obtain Q(X ) = Y TDY .
Therefore, q(X ) =

∑n
i=1
∑n

j=1 di,jyiyj . But, since D is a diagonal matrix,
then di,j = λj if i = j and 0 elsewhere, then:

Q(X ) =
n∑

j=1

λjy
2
j .
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Proposition

A quadratic form q (or the associated symmetric matrix A) is:
positive if and only if the eigenvalues of A are positive or zero.
negative if and only if the eigenvalues of A are negative or zero.
definite positive if and only if the eigenvalues of A are strictly
positive.
definite negative if and only if the eigenvalues of A are strictly
negative
undefined if and only if the eigenvalues of A are designated of
opposite signs.
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Proof

Suppose that all the eigenvalues are positive or nul. We then have
∀x ,Q(x) =

∑n
j=1 λjy

2
j ≥ 0. Which means that the quadratic form is

positive. Suppose that the quadratic form is positive that is to say
∀x ,Q(x) ≥ 0. Hence

∑n
j=1 λjy

2
j ≥ 0. Let us show that

j = 1, . . . , n, λj ≥ 0. If there exists k such that λk < 0 then for x
such that PTX = Y where yk = 1 and yj = 0,∀j 6= k we have
Q(x) = λk < 0 which contradicts the hypothesis. So all the
eigenvalues are positive or nul.
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Suppose that all the eigenvalues are strictly positive. We then have
∀x ,Q(x) =

∑n
j=1 λjy

2
j ≥ 0. We show that ∀x 6= 0,Q(x) > 0. If

there is x 6= 0 s.t Q(x) = 0 then
∑n

j=1 λjy
2
j = 0 where

∀j = 1, . . . , n, yj = 0 therefore Y = 0. But Y = PTX then
PTX = 0 which implies X = 0 because PT is invertible. So x = 0
which contradicts the hypothesis. So ∀x 6= 0, q(x) > 0 which means
that the quadratic form is positive definite.

Suppose the quadratic form is positively defined, that is,
∀x 6= 0,Q(x) > 0. Hence

∑n
j=1 λjy

2
j > 0. Let us show that

j = 1, ..., n, λj > 0. If there exists k such that λk ≤ 0 then for ∀x
such that PTX = Y where yk = 1 and yj = 0,∀j 6= k we have
Q(x) = λk ≤ 0 which contradicts the hypothesis. So all the
eigenvalues are strictly positive.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 19 / 64



Suppose that all the eigenvalues are strictly positive. We then have
∀x ,Q(x) =

∑n
j=1 λjy

2
j ≥ 0. We show that ∀x 6= 0,Q(x) > 0. If

there is x 6= 0 s.t Q(x) = 0 then
∑n

j=1 λjy
2
j = 0 where

∀j = 1, . . . , n, yj = 0 therefore Y = 0. But Y = PTX then
PTX = 0 which implies X = 0 because PT is invertible. So x = 0
which contradicts the hypothesis. So ∀x 6= 0, q(x) > 0 which means
that the quadratic form is positive definite.
Suppose the quadratic form is positively defined, that is,
∀x 6= 0,Q(x) > 0. Hence

∑n
j=1 λjy

2
j > 0. Let us show that

j = 1, ..., n, λj > 0. If there exists k such that λk ≤ 0 then for ∀x
such that PTX = Y where yk = 1 and yj = 0,∀j 6= k we have
Q(x) = λk ≤ 0 which contradicts the hypothesis. So all the
eigenvalues are strictly positive.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 19 / 64



Particular case for matrices (2,2)

We can know the sign of the eigenvalues and therefore the nature of a
symmetric matrix of order 2 without calculating the eigenvalues:

It follows to calculate its determinant and its trace.
Recall

1 det(A) = λ1 × λ2 (product of the 2 eigenvalues).
2 Trace(A) = λ1 + λ2 (sum of the 2 eigenvalues).
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If det A > 0 then the 2 eigenvalues are of the same sign
If trace A > 0, the 2 eigenvalues are strictly positive and the matrix
is positive definite.
If trace A < 0, the 2 eigenvalues are strictly negative and the matrix
is negative definite.

If det A = 0 then at least one of the 2 eigenvalues is null
If trace A > 0 one has a zero eigenvalue and the other strictly
positive from which the matrix is positive.
If trace A < 0 one has a zero eigenvalue and strictly negative, hence
the matrix is negative.
If trace A = 0then 0 is a double eigenvalue hence the matrix is both
ositive and negative.

If det A < 0 then the 2 eigenvalues are of opposite signs and the
matrix id undefined.

Warning: do not use this when n > 2.
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Examples

To the quadratic form Q((x1, x2)) = x2
1 + x2

2 , we associate the

following matrix: A =

(
1 0
0 1

)
.

Since A is a diagonal matrix, the 2 eigenvalues of A are the elements
on the diagonal. There is a double eigenvalue that is strictly positive,
hence A is a definite positive matrix, and same is the quadratic form.

To the quadratic form Q((x1, x2)) = x2
1 + x2

2 + 2x1x2, we associate

the following matrix: A =

(
1 1
1 1

)
.

Since A is a symmetric matrix of dimension 2, it is sufficient to
calculate the determinant and the trace of A to determine its nature.
det(A) = 0 this means that one of the eigenvalues is nul.
Tr(A) = 2 > 0, this means that the second eigenvalue is positive.
Hence A is positive and so is the quadratic form.
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To the quadratic form Q((x1, x2)) = x1x2, we associate the following

matrix: A =

(
0 1

2
1
2 0

)
.

Since A is a symmetric matrix of dimension 2, it is sufficient to
calculate the determinant and the trace of A to determine its nature.
det(A) = − 1

4 < 0 this means that the eigenvalues are of opposite
signs. Hence A is undefined and so is the quadratic form.

To the quadratic form Q((x1, x2)) = −2x2
1 + 4x1x2 − 7x2

2 , we

associate the following matrix: A =

(
−2 2
2 −7

)
.

Since A is a symmetric matrix of dimension 2, it is sufficient to
calculate the determinant and the trace of A to determine its nature.
det(A) = 10 > 0 this means that the eigenvalues are of same signs.
Tr(A) = −9 < 0 this means that both eigenvalues are negative.
Hence A is negative definite and so is the quadratic form.
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Let A be a square matrix of dimension n:

We note A(p) the matrix obtained by taking the first p rows and p
columns from A, where p = 1, 2, . . . , n.
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Proposition

A quadratic form or its associated matrix A is:
1 definite positive iff ∀p = 1, . . . , n, det(A(p)) > 0
2 definite negative iff ∀p = 1, . . . , n, (−1)pdet(A(p)) > 0
3 positive then ∀p = 1, . . . , n, det(A(p)) ≥ 0
4 negative then ∀p = 1, . . . , n, (−1)pdet(A(p)) ≥ 0
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Example1

Let Q((x1, x2, x3)) = 3x2
1 + 8x2

2 + 3x2
3 − 2

√
2x1x2 + 4x2x3, the associated

matrix is:

1 First method: Calculate the eigenvalues of this symmetric matrix of
dimension 3 in order to determine their signs.

2 Second method: Study the sign of det(A(p)),∀p = 1, . . . , 3.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 26 / 64



First method

The eigenvalues of A are the root of PA(λ).

There is a trivial root 3, and the roots of the polynomial λ2 − 11λ+ 18
are 2 and 9. Hence, the three roots are λ1 = 3, λ2 = 2, λ3 = 9. They are
all strictly positive values, therefore A is a positive definite matrix and so
is Q.
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Second method

We study det(A(p)),∀p = 1, . . . , 3.

We hence have, ∀p = 1, . . . , 3, det(A(p)) > 0.
Therefore A is a positive definite matrix and so is Q.
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Example2

Let Q((x1, x2, x3)) = −6x2
1 − 16x2

2 − 6x2
3 + 4sqrt2x1x2 − 8x2x3, the

associated matrix is:

1 First method: Calculate the eigenvalues of this symmetric matrix of
dimension 3 in order to determine their signs.

2 Second method: Study the sign of det(A(p)),∀p = 1, . . . , 3.
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First method

The eigenvalues of A are the root of PA(λ).

The three roots are λ1 = −4, λ2 = −6, λ3 = −18. They are all strictly
negative values, therefore A is a negative definite matrix and so is Q.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 30 / 64



Second method

We study det(A(p)),∀p = 1, . . . , 3.

We hence have, det(A(1)) < 0, det(A(2)) > 0, det(A(3)) < 0.
We hence have, ∀p = 1, . . . , 3, (−1)pdet(A(p)) > 0.
Therefore A is a negtive definite matrix and so is Q.
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Inner product

Definition
An inner product on a real vector space V is a bilinear form which is both
positive definite and symmetric.
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Angles and length

Suppose that φ(x , y) is an inner product on a real vector space V .

Then one may define the length of a vector v ∈ V by setting

||v || =
√
φ(v , v)

and the angle θ between two vectors v ,w ∈ V by setting

cos(θ =
φ(v ,w)

||v ||.||w ||

These formulas are known to hold for the inner product on Rn.

Theorem (Cauchy-Shwartz inequality)

When V is a real vector space with an inner product, one has

|φ(v ,w)| ≤ ||v ||.||w || ∀ v ,w ∈ V .
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Orthogonal vectors

Definition (Orthogonal and orthonormal)

Suppose φ(x , y) is a symmetric bilinear form on a real vector space V .
Two vectors u, v are called orthogonal, if φ(u, v) = 0.
A basis v1, v2, ..., vn of V is called orthogonal, if φ(vi , vj) = 0 whenever
i 6= j and it is called orthonormal, if it is orthogonal with φ(vi , vi ) = 1
for all i.

Theorem (Linear combinaision)

Let v1, v2, ..., vn be an orthogonal basis of an inner product space V.
Then every vector v ∈ V can be expressed as a linear combination

v =
n∑

i=1

civi , where ci =
φ(v , vi )

φ(vi , vi )
, for all i .

If the basis is actually orthonormal, then ci = φ(v , vi ) for all i.
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Gram-Schmidt procedure

Suppose that v1, v2, ..., vn is a basis of an inner product space V .
Then we can find an orthogonal basis w1,w2, ...,wn as follows.

Define the first vector by w1 = v1 and the second vector by

w2 = v2 −
φ(v2,w1)

φ(w1,w1)
w1.

Then w1,w2 are orthogonal and have the same span as v1, v2.
Proceeding by induction, suppose w1,w2, ...,wk are orthogonal and
have the same span as v1, v2, ..., vk . Once we then define

wk+1 = vk+1 −
k∑

i=1

φ(vk+1,wi )

φ(wi ,wi )
wi

we end up with vectors w1,w2, ...,wk+1 which are orthogonal and
have the same span as the original vectors v1, v2, ..., vk+1.

Using the formula from the last step repeatedly, one may thus obtain
an orthogonal basis w1,w2, ...,wn for the vector space V .
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Gram-Schmidt procedure: Example

We define the first vector by w1 = v1 and the second vector by

w2 = v2 −
φ(v2,w1)

φ(w1,w1)
w1 =

Then w1,w2 are orthogonal and we may define the third vector by:

w3 = v3 −
φ(v3,w1)

φ(w1,w1)
w1 −

φ(v3,w2)

φ(w2,w2)
w2
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Example
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Solution
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Restrictions

We can always restrict a quadratic form to a subspace vector of E. We
will denote by Q|F the restriction of Q to a subspace F ⊂ E .

Notice that a quadratic form which is positive definite over a space
vector E is automatically defined positive in restriction at all vector
subspaces of E.
We will be interested in the maximum dimension of the subspaces in
restriction of which Q is positive definite or negative definite.

Definition
Let E be a finite dimensional vector space and Q a form quadratic on E.
The signature of Q is the pair of integers (p, q) ∈ N given through:

p = max{dimF |F subspace of E such that Q|F is definite positive}

q = max{dimF |F subspace of E such that Q|F is definite negative}
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Example

A quadratic form Q on a space E of dimension n which is defined positive
is of signature (n, 0). This is the case, for example, for the product usual
scalar on Rn.

In fact, for a positive definite quadratic form, the largest space on
which Q is positive definite is E itself.
If F is a space on which Q is negative definite, it cannot contain a
non-zero vector x, because we would have for this vector Q(x) > 0
and Q(x) < 0. The subspace F = {0} is the only on which Q is
defined negative.
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Reduction of quadratic forms

The study of quadratic forms is based on an algorithm due to F. Gauss,
which makes it possible to simplify the expression of a quadratic form
by writing it as a sum of squares of linear shapes.

Theorem
Let E be a finite dimensional space, Q a quadratic form on E of signature
(p, q). Then there exist p + q independent linear forms l1, ..., lp+q ∈ E∗

such that:

Q(x) =

p∑
i=1

li (x)
2 −

p+q∑
j=p+1

lj(x)
2

This breakdown into squares of linear shapes is not unique. However, we
can always calculate the signature of the quadratic form from such a
decomposition, if the linear forms are independent between them.
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Proposition

Consider a quadratic form given by the expression

Q(x) = ±l1(x)
2 ± l2(x)

2 ± ...± lk(x)
2.

where the li are independent linear forms. So the signa- ture is given
by the number of signs + and the number of signs − appearring in this
decomposition.

The proof will be given later in this Chapter.
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Reduction of quadratic forms method

We place ourselves in an arbitrary base, Q takes the form

Q(x1, ..., xn) =
∑
i

bi,ix
2
i + 2

∑
i<j

bi,jxixj .

If one of the diagonal coefficients bi,i is non-zero, say b1,1 6= 0, we
consider the polynomial as a function of the variable x1 and put it
under canonical form, as follows.

We place the term x2
1 at the head of the polynomial and we factorize

by x1 into the remaining terms, if possible. The expression of Q then
takes the form

Q(x) = b1,1[x
2
1 + x1(...) + (...)].

Expressions in parentheses must no longer contain the variable x1.
Let us denote them a1 and a2:

Q(x) = b1,1[x
2
1 + x1a1 + a2].

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 44 / 64



Reduction of quadratic forms method

We place ourselves in an arbitrary base, Q takes the form

Q(x1, ..., xn) =
∑
i

bi,ix
2
i + 2

∑
i<j

bi,jxixj .

If one of the diagonal coefficients bi,i is non-zero, say b1,1 6= 0, we
consider the polynomial as a function of the variable x1 and put it
under canonical form, as follows.

We place the term x2
1 at the head of the polynomial and we factorize

by x1 into the remaining terms, if possible. The expression of Q then
takes the form

Q(x) = b1,1[x
2
1 + x1(...) + (...)].

Expressions in parentheses must no longer contain the variable x1.
Let us denote them a1 and a2:

Q(x) = b1,1[x
2
1 + x1a1 + a2].

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 44 / 64



We factor the previous expression using the remarkable identity

x2
1 + x1a1 = (x1 +

a1

2
)2 − a2

1

4
We set l1(x1, . . . , xn) =

√
|b1,1|(x1 +

a1
2 ), the expression of Q

becomes:

Q(x1, . . . , xn) = ±l1(x1, . . . , xn)
2 + b1,1(a2 −

a2
1

4
)

The expression (a2 − a21
4 ) no longer involves the variable x1. It’s a

quadratic form to which the algorithm can be re-applied. The sign
before the linear form l1 is that of b1,1.
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If all the diagonal coefficients are zero, we consider a coefficient
bi,j 6= 0, say b1,2 to simplify the notations.

We place the term x1x2 at the head of the polynomial and we
factorize by x1 into the remaining terms, if possible. We do the same
with x2. We obtain

Q(x) = b1,2[x1x2 + x1(...) + x2(...) + (...)].

Expressions in parentheses must no longer contain the variable x1.
Let us denote them a1, a2 and a3:

Q(x) = b1,2[x1x2 + x1a1 + x2a2 + a3].

We factorize the previous expression using the remarkable identity

x1x2 + x1a1 + x2a2 = (x1 + a2)(x2 + a1)− a1a2.

We convert the product (x1 + a2)(x2 + a1) to the difference of two
squares by using remarkable identity

xy =
1
4
(x + y)2 − 1

4
(x − y)2
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The expression of Q becomes:

We let:

which gives:

The last term in the previous expression no longer involves the variables
x1 and x2. It is a quadratic form to which we can apply the algorithm
again.
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Ultimately, the algorithm is based on the following three rules.

Note that this algorithm is a generalization of the method of solving
polynomials of degree two with one variable.
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Let us explain why the family of linear forms given by the algorithm is
linearly independent. Consider the matrix whose rows are given by the
coordinates of these linear forms.

1-If in the algorithm, we have at each step a non-zero diagonal, the
matrix obtained is in echelon form, without zero line. Its rank is equal to
its number of lines, which shows that these lines are indeed linearly
independent of each other.

2-If at some point there are no non-zero diagonal terms, the algorithm
produces two linear forms l1 and l2 whose expressions are given above. It
suffices to subtract the first from the second to put the matrix in echelon
form.
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Example 1

we let

which gives Q = l21 + l22 , the signature is equale to (2, 0)
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Example 2

we let

which gives Q = l21 − l22 − l23 , the signature is equale to (1, 2)
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Orthogonal basis

From the previous theorem, we can construct a basis of E in which Q is
given by a particularly simple expression.

Theorem
Let E be a finite dimensional space, Q a quadratic form on signature E
(p, q). Then there exists a basis (ei )i=1..n of E such that

Q(x1e1 + ...+ xnen) = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q.
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Notice that the matrix of Q in the base (ei ) is diagonal.
This shows that this basis satisfies φ(ei , ej) = 0 for all i 6= j .
We denoted φ the bilinear form associated with Q. This brings us to the
following definition:

Definition
Let E be a finite dimensional vector space and φ a symmetric bilinear
form defined on E. We say that a basis (e1, ...en) of E is orthogonal for φ
or for the quadratic form Q associated with φ if

φ(ei , ej) = 0 for all i , j such that i 6= j .

this implies

Proposition

Any symmetrical bilinear form defined over a vector space of finite
dimension admits an orthogonal basis.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 53 / 64



Construction of an orthogonal basis

We consider a quadratic form defined over Rn.

- We apply the Gaussian reduction algorithm to obtain linear forms
l1, ..., lp+q and we consider the matrix P whose rows are given by the
coordinates of these linear forms.

- If p + q < n, we must complete the family (li ) so as to obtain a basis of
R∗n . In practice, this involves adding rows to the matrix P in order to
make an invertible square matrix.
We can take these lines from the shape (0...1...0) by judiciously
positioning the 1. Place them in the columns corresponding to the
columns without pivots of the Echelon form of P always works.

- The searched vectors have for coordinates, the columns of the inverse of
the matrix P.
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Verification

Let’s check that this procedure gives an orthogonal basis.
Through construction, the family (ek) obtained satisfies li (ek) = 0 for
i 6= k. The completed base (li ) is dual at the base (ek). The polar form
of Q = l2i − l2j worth

because this form is symmetric bilinear and satisfies Q(x) = φ(x , x). We
then obtains φ(ek , el) =

∑
li (ek)li (el)−

∑
lj(ek)lj(el) = 0 if k 6= l .
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Example 1

with

The forms l1 and l2 have coordinates (1 1
2 ) and (0

√
3

2 ).
We form the matrices P and P−1 whose lines are given by these line
vectors.

The columns of the matrix P−1 form an orthogonal basis for Q.
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Example 2

with

The forms l1, l2 and l3 have coordinates 1
2 (1 1 2), 1

2 (1 − 1 0) and (0 0 1).
We form the matrices P and P−1 whose lines are given by these line
vectors.

The columns of the matrix P−1 form an orthogonal basis for Q.
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Example 3

with

The forms l1, l2 have coordinates (1 1 1), (1 1 − 1).
It is necessary to add a line to it in order to make it square invertible. For
this, we place a 1 in the second column on the third row. All that’s left is
to invert the matrix to get the orthogonal basis for Q.

The columns of the matrix P−1 form an orthogonal basis for Q.
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The diagonal matrix

Theorem
Let S be a symmetric matrix. So there exists a diagonal matrix D whose
all diagonal terms belong to {−1, 0, 1} and an invertible matrix P such
that:

S = PTDP

Let us demonstrate this result. Consider the quadratic form on
mathbbRn whose matrix is given by S . The previous theorem gives a
basis (ei ) in which the quadratic form has a diagonal D matrix, with
coefficients diagonals belonging to {−1, 0, 1}.
Let us denote by P the passage matrix of the canonical base (ei ), it is
the matrix whose rows are given by the linear forms li . From the base
change formula for the quadratic forms, we have S = PTDP.
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Examples
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Study of the signature

Lemma
Let E be a finite dimensional vector space, Q a quadratic form of
signature (p, q). Suppose there are vector subspaces E1, E2 of E such
that:

E1 + E2 = E ,
Q is positive definite in restriction to E1,
Q is negative in restriction to E2.

Then E1 ∩ E2 = {0} and p = dim(E1).

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD October 13, 2021 61 / 64



Proof

The quadratic form Q is both positive and negative definite on E1 ∩ E2.
We therefore have Q(x) > 0 and Q(x) ≤ 0 for any non-zero vector x in
this intersection, which shows that it contains only the zero vector.
The subspaces E1 and E2 are in direct sum, we deduce

dim(E1) = dim(E )− dim(E2).

Let F be a subspace of E such that Q is positive definite in restriction to
F. Again, the quadratic form Q is positive and negative definite on the
intersection F ∩ E2, which is therefore restricted to {0}. This allows us to
conclude:

dim(F ) ≤ dim(E )− dim(E2) = dim(E1).
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Proof of the Theorem

We prove from this lemma that a quadratic form of the form

Q(x1e1 + ...+ xnen) = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q

is necessarily of signature (p, q).
For this, we notice that Q is positive definite on the vector space E1
generated by (e1, ..., ep) and negative on the space E2 generated by
(ep+1, ..., en). By the lemma, we see that p corresponds well to the first
coefficient of the signature. We apply the same reasoning on the
quadratic form −Q which has for signature (q, p) in order to conclude.
Finally, note that the matrix of Q is diagonal. The first p diagonal
coefficients are equal to one, the following q are equal to −1 and the
others are zero. Such a matrix has a kernel of dimension n − p − q.
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We can deduce the following corollary.

Corollary

Let E be a vector space of finite dimension n, Q a quadratic form of
signature (p, q). Then

p + q = rank(Q), p + q + dimker(Q) = n.

Method: calculation of the signature of a quadratic form:
Just reduce the quadratic form and count the number of "+" signs and
signs "-" in front of the squares of the linear shapes appearing in the
former reduced expression. It is crucial that these linear shapes are
independent between them.
It is sometimes possible to determine the signature of a quadra- tick
without using the Gaussian reduction algorithm, using the determining.
This method is explained in the supplements to this chapter.
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Conical

Definition
A conic C is a subset of the plane composed of points whose coordinates
(x , y) ∈ R2 in a certain basis satisfy an equation of the form:

ax2 + bxy + cy2 + dx + ey + f = 0

with a, b, c, d, e and f real numbers such that a, b and c are not all the
three null.

We will show that a judicious change of variables makes it possible to
simplify the conic equation.
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Proposition

Consider a conic C. Then there is a change of affine variables of the form:

which transforms the expression of the conic into one of the following
shapes:

X 2 + Y 2 = 1 the conic is an ellipse,
X 2 − Y 2 = 1 the conic is a hyperbola,
X 2 − Y = 0 the conic is a parabola,

or one of the forms:

X 2 = 1,X 2 − Y 2 = 0,X 2 = 0,X 2 + Y 2 = 0,X 2 + Y 2 = −1,X 2 = −1,

in which case the conic section is composed respectively of two parallel
lines, two intersecting lines, a line, a point or is empty.
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We can determine which conic it is by looking at the signature of the
quadratic form Q(x , y) = ax2 + bxy + cy2 or the associated
discriminant: ∆ = ac − b2

4 .

signature (2,0)−→ ellipse or point or empty (∆ > 0)
signature (1,1)−→ hyperbola or two secant lines (∆ < 0)
signature (1,0)−→ parabola or two lines or straight or empty (∆ = 0)

To distinguish, for example, between an ellipse, a point and the empty
set, it suffices to show at least two points belonging to the ellipse.

The discriminant of a quadratic form is equal to the determinant of the
matrix associated with the quadratic form. Be careful not to confuse him
with the discriminant of a polynomial. The link with the signature will be
explained later.
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Method

Reduction of the equation of a conic
We perform the change of variable which reduces the shape
quadratic Q(x , y) = ax2 + bxy + cy2.

Even if it means inverting the two variables, the conic equation takes
one of the following three forms:
x ′2 + y ′2 + αx ′ + βy ′ + γ = 0 signature (2.0) or (0.2)
x ′2− y ′2 + αx ′ + βy ′ + γ = 0 signature (1.1)

x ′2 + αx ′ + βy ′ + γ = 0 signature (1.0) or (0.1)

In the first two cases, one makes disappear the terms of degree 1 in
putting the polynomials x ′2 + αx ′and ± y ′2 + βy ′ in canonical form.
Same for x ′ in the last case. There remains a term or constant in
which case we take Y = y ′, or of degree one in y ′ and we assign it
to Y.
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Examples

Determine the nature of the conic

By reduction

we let
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The conic section is an ellipse centered at the point of coordinates
X = 0,Y = 0 where x = 0, y = −1.
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For the conic

By reduction

we let
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The conic section is a hyperbola.
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Quadrics

The same method works in any dimension. Let us deal with the case of
dimension 3.

Definition
A quadric Q is a subset of the compound space points whose coordinates
(x , y , z) ∈ R3 in a certain basis satisfy an equation of the form

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0

with real coefficients such that a, b, c, d, e and f are not all zero.
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The previous method gives the following result.

Proposition

Consider a quadric Q ⊂ R3. So there is a change of affine variables of
the form
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which transforms the expression of the quadric into one of the following
forms

X 2 + Y 2 + Z 2 = 1 Ellipsoid
X 2 + Y 2 − Z 2 = 1 One-sheet hyperboloid,
X 2 − Y 2 − Z 2 = 1 Two-sheets hyperboloid
X 2 + Y 2 − Z 2 = 0 Cone
X 2 + Y 2 − Z = 0 Elliptic paraboloid
X 2 − Y 2 − Z = 0 Hyperbolic paraboloid

or one of the following forms, which correspond to the case where the
quadric is the product of a conic section by a line:

X 2 + Y 2 = 1 Elliptic cylinder
X 2 − Y 2 = 1 Hyperbolic cylinder,
X 2 − Y = 0 Paraolic cylinder
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or finally one of the following forms:

In which case the quadric corresponds to two parallel planes, two
separate planes cants, a point, a line, a plane or is empty.

Here again, we can use the signature of the quadratic form

Q(x , y , z) = ax2 + by2 + cz2 + dxy + exz + fyz

to determine the nature of the quadric.

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD November 8, 2021 15 / 31



Q(x , y , z) = ax2 + by2 + cz2 + dxy + exz + fyz

signature (3,0) → ellipsoid, point or void;
signature (2,1) → hyperboloid with one or two layers, cone;
signature (2,0) → paraboloid or elliptical cylinder, straight, empty;
signature (1,1) → paraboloid or hyperbolic cylinder, two secant planes;
signature (1,0) → parabolic cylinder, two parallel planes, plane, void.
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The quadric is a Sphere:

X 2 + Y 2 + Z 2 = 1

Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD November 8, 2021 17 / 31



Dr Lama Tarsissi Linear and Bilinear Algebra I-SUAD November 8, 2021 18 / 31



The quadric is a one-sheet hyperboloid:

X 2 + Y 2 − Z 2 = 1
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The quadric is a Two-sheet hyperboloid:

X 2 − Y 2 − Z 2 = 1
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The quadric is an Elliptic paraboloid:

X 2 + Y 2 − Z 2 = 0
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The quadric is a hyperboloic paraboloid:

X 2 − Y 2 − Z 2 = 0
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Example

We consider the quadric Q of R3 given by:

Let us determine the nature of this quadric. By reduction:
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We let

The equation becomes:

X 2 + Y 2 − Z 2 = 1
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The quadric is a one-sheet hyperboloid:
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Quadratic forms and determinants

Recall that a quadratic form is said to be non-degenerate if its nucleus is
null. Equivalently, the determinant of its matrix calculated in a any base
is non-zero.
In general, the determinant of the matrix associated with a quadra- tick
depends on the base chosen to calculate it. Recall that the matrices B
and B ′ in two different bases (ei ) and (e′i ) are related by the formula

B ′ = PTBP.

So we have

det(B ′) = det(PT )det(B)det(P) = det(P)2det(B)

and the two determinants are different in general. We note that they
have the same sign. The sign of the determinant of the matrix associated
with a quadratic form does not depend on the basis chosen to express
this matrix.
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Let us examine how this sign is related to the signature (p, q) of the
quadratic form Q by placing itself in an orthogonal basis for Q.
In a such basis, the matrix of Q has p strictly positive coefficients and q
negative coefficients. The determinant is equal to the product of these
coefficients. We deduce the following proposition.

Proposition

A quadratic form of signature (p, q) is non-degenerate if and only if the
determinant of its matrix is non-zero. In that case, the sign of this
determinant is strictly negative if and only if q is odd

From this we deduce important information on the signature in small
dimension. For example, in dimension 2, if the determinant of the matrix
of a quadratic form in a certain basis is strictly negative, the signature is
necessarily (1,1) and if it is strictly positive, it is (2,0) or (0,2).
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We distinguish between these last two cases by looking at the coefficients
diagonals of the matrix of Q. These coefficients correspond to the values
that Q takes on the vectors of the base in which its matrix is calculated.
If Q is signed (2, 0), they are all strictly positive. We cqn conclude:

Proposition

Let E be a vector space of dimension 2, Q a form non degenerate
quadratic defined on E and B = {bi,j} its matrix in a basis of E. Then
the signature of Q is

(1,1) if det(B) < 0,
(2,0) if det(B) > 0 and b1,1 > 0,
(0,2) if det(B) > 0 and b1,1 < 0.
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Classification of the quadratic form

The preceding theorems can be formulated as a result of classification.
Let us introduce an equivalence relation on the set of quadratic forms
defined on a given space.

Proposition

Two quadratic forms Q and Q’ defined on a subspace E are said to be
equivalent if there is a linear map invertible f : E → E such that:

Q ′(x) = Q(f (x)) for all x ∈ E .

Two equivalent quadratic forms have the same signature because the
application f puts in bijection the spaces on which the two forms are
definite positive or definite negative. We will show the converse.
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Sylvester’s inertia theorem

Theorem
Two quadratic forms defined on a vector space of finite dimension are
equivalent if and only if they have the same signature.

Proof.
Let Q and Q’ be two quadratic forms having the same signature. We saw
that it exists two bases (ei ) and (e′i ) such that

Q(x1e1 + ...+ xnen) = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q,

Q ′(x1e
′
1 + ...+ xne

′
n) = x2

1 + ...+ x2
p − x2

p+1 − ...− x2
p+q.

Let us denote by f the application which sends the base (ei ) on the base
(e′i ) and let x = x1e1 + ...+ xnen. We then have f (x) = x1e

′
1 + ...+ xne

′
n,

which implies Q ′(f (x)) = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q = Q(x). This
is the desired equality.
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As an application, we give the classification of quadratic forms defined on
a two-dimensional space. Just list the values possible for the signature
(p, q) and to give an example of a quadra- tick for each of these values.

Proposition

Let E be a two-dimensional vector space and Q a quadratic form on E.
Then there exists a basis (e1, e2) of E in which Q takes one of the
following forms:

Q(x1e1 + x2e2) = 0 signature (0,0)
Q(x1e1 + x2e2) = x2

1 signature (1.0)
Q(x1e1 + x2e2) = −x2

1 signature (0,1)
Q(x1e1 + x2e2) = x2

1 + x2
2 signature (2.0)

Q(x1e1 + x2e2) = −x2
1 − x2

2 signature (0.2)
Q(x1e1 + x2e2) = x2

1 − x2
2 signature (1.1)
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